Essential Formulas for Algebra 2 Final Exam

Laws of Exponents

Multiply Powers of the Same Base = Adding Exponents	$\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}$
Divide Powers of the Same Base = Subtracting Exponents	$\frac{a^{m}}{a^{n}}=a^{m-n}$
Power Rule $=$ Multiplying Exponents	$\left(a^{m}\right)^{n}=a^{m \times n}$
Zero Exponent = 1	$a^{0}=1$
Distribution of Exponent with Multiple Bases	$\begin{aligned} & (a b)^{n}=a^{n} b^{n} \\ & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \end{aligned}$
Negative Exponent = Reciprocal	$\begin{aligned} a^{-n} & =\frac{1}{a^{n}} \\ \frac{a^{-m}}{b^{-n}} & =\frac{b^{n}}{a^{m}} \end{aligned}$
Distribution of Negative Exponent with Multiple Bases	$\begin{aligned} & (a b)^{-n}=a^{-n} b^{-n}=\frac{1}{a^{n} b^{n}} \\ & \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} \end{aligned}$

$$
\begin{array}{rlr}
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b} & \sqrt{a \times b}=\sqrt{a} \times \sqrt{b} \\
\sqrt{a-b} \neq \sqrt{a}-\sqrt{b} & \sqrt{a \div b}=\sqrt{a} \div \sqrt{b}
\end{array}
$$

Properties of Radicals

Distribution of Radicals of the Same Index	
(Where $a \geq \mathbf{0}$ and $\boldsymbol{b} \geq \mathbf{0}$ if \boldsymbol{n} is even)	$\sqrt[n]{a b}=(\sqrt[n]{a})(\sqrt[n]{b})$
Power Rule of Radicals $=$ Multiplying Exponents	$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Reverse Operations of Radicals and Exponents	$\sqrt[n]{\sqrt[n]{a}}=\sqrt[(m \times n)]{a}$
$\sqrt[n]{a^{n}}=a \quad$ (if n is odd)	
$\sqrt[n]{a^{n}}=\|a\| \quad$ (if n is even)	

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \quad \begin{gathered}
\text { The index of the radical is the }
\end{gathered}
$$

Special Products

$$
\begin{aligned}
& (A+B)(A-B)=A^{2}-B^{2} \\
& (A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}
\end{aligned}
$$

$(A+B)^{2}=A^{2}+2 A B+B^{2}$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2} \quad(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}
$$

Special Expressions

Difference of Squares

$$
\begin{aligned}
A^{2}-B^{2} & =(A+B)(A-B) \\
A^{2}+2 A B+B^{2} & =(A+B)^{2} \\
A^{2}-2 A B+B^{2} & =(A-B)^{2} \\
A^{3}+B^{3} & =(A+B)\left(A^{2}-A B+B^{2}\right) \\
A^{3}-B^{3} & =(A-B)\left(A^{2}+A B+B^{2}\right)
\end{aligned}
$$

Perfect Trinomial Squares
Perfect Trinomial Squares
Sum of Cubes
Difference of Cubes
Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\text { Discriminant }=b^{2}-4 a c
$$

When Discriminant is Positive, $b^{2}-4 a c>0 \rightarrow$ Two Distinct Real Roots
When Discriminant is Zero, $\quad b^{2}-4 a c=0 \rightarrow$ One Distinct Real Root (or Two Equal Real Roots)
When Discriminant is Negative, $b^{2}-4 a c<0 \rightarrow$ No Real Roots

Note the pattern:

$i^{1}=i \quad i^{2}=-1 \quad i^{3}=-i \quad i^{4}=1$
$i^{5}=i \quad i^{6}=-1 \quad i^{7}=-i \quad i^{8}=1$
$i^{9}=i \quad i^{10}=-1 \quad \ldots .$.

Product of Conjugate Complex Numbers

$$
\begin{aligned}
(\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i})(\boldsymbol{a}-\boldsymbol{b} \boldsymbol{i}) & =a^{2}-b^{2} i^{2}=a^{2}-b^{2}(-1) \\
(\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i})(\boldsymbol{a}-\boldsymbol{b} \boldsymbol{i}) & =\boldsymbol{a}^{2}+\boldsymbol{b}^{2}
\end{aligned}
$$

Pattern repeats every $4^{\text {th }}$ power of i.

Midpoint of a Line Segment
$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Distance of a Line Segement

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Slope

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Standard Equation for Circles

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$P(x, y)=$ any point on the path of the circle
$C(h, k)=$ centre of the circle $r=$ length of the radius

Page 2 of 10 .

Point-Slope form: - a form of a linear equation when given a slope (m) and a point $\left(x_{1}, y_{1}\right)$ on the line

$$
\frac{y-y_{1}}{x-x_{1}}=m \text { (slope formula) } \quad y-y_{1}=m\left(x-x_{1}\right) \quad \text { (Point-Slope form) }
$$

If we rearrange the equations so that all terms are on one side, it will be in standard (general) form:

$$
A x+B y+C=0 \quad \text { (Standard or General form) }
$$

($A \geq 0$, the leading coefficient for the x term must be positive)

When given a slope (m) and the y-intercept $(0, b)$ of the line, we can find the equation of the line using the slope and \boldsymbol{y}-intercept form:

$$
y=m x+b \quad \text { where } m=\text { slope and } b=y \text {-intercept }
$$

Parallel Lines

Perpendicular Lines

slope of line $1=$ negative reciprocal slope of line 2

$$
m_{l_{1}}=\frac{-1}{m_{l_{2}}}
$$

$y \propto x(y$ is directly proportional to $x)$

$$
y=k x
$$

where $k=$ constant of variation (constant of proportionality - rate of change)

$$
\begin{gathered}
y \propto \frac{x z}{w} \quad(y \text { is jointly proportional to } x, z \text { and } w) \\
y=k \frac{x z}{w}
\end{gathered}
$$

where $k=$ constant of variation (constant of proportionality)

> Average Rate of Change $=m=\frac{\Delta y}{\Delta x}$
> Average Rate of Change $=\frac{f(b)-f(a)}{b-a}$
> It is the slope of the secant line between the points $(a, f(a))$ and $(b, f(b))$

Summary of Types of Functions: (see page 226 of textbook)

Linear Functions $f(x)=m x+b$

Domain: $x \in R$
Range: $f(x) \in R$

Domain: $x \in R$

Range: $f(x) \in R$

Domain: $x \in R$
Range: $f(x) \in R$

Power Functions $f(x)=x^{n}$ where $n>1$ and $n \in N$

Domain: $x \in R$
Range: $f(x) \geq 0$

Domain: $x \in R$
Range: $f(x) \in R$

Domain: $x \in R$
Range: $f(x) \geq 0$

Domain: $x \in R$
Range: $f(x) \in R$

Root Functions $f(x)=\sqrt[n]{x} \quad$ where $n \geq 2$ and $n \in N$

Domain: $x \geq 0$
Range: $f(x) \geq 0$

Domain: $x \in R$
Range: $f(x) \in R$

Domain: $x \geq 0$
Range: $f(x) \geq 0$

Domain: $x \in R$

Range: $f(x) \in R$

Reciprocal Functions $f(x)=\frac{1}{x^{n}} \quad$ where $n \in N$

Domain: $x \neq 0$
Range: $f(x) \neq 0$

Domain: $x \neq 0$
Range: $f(x)>0$

Domain: $x \neq 0$
Range: $f(x) \neq 0$

Domain: $x \neq 0$
Range: $f(x)>0$

Absolute Value Functions
 Greatest Integer Functions

Domain: $x \in R$
Range: $f(x) \geq 0$

Domain: $x \in R$
Range: $f(x) \in I$

For Quadratic Functions in Standard Form of $f(x)=a(x-h)^{2}+k$

$$
\text { Vertex at }(h, k) \quad \text { Axis of Symmetry at } x=h \quad \text { Domain: } x \in R
$$

$a=$ Vertical Stretch Factor
$a>0 \quad$ Vertex at Minimum (Parabola opens UP) Range: $\boldsymbol{y} \geq \boldsymbol{k}$ (Minimum)
$a<0 \quad$ Vertex at Maximum (Parabola opens DOWN) Range: $\boldsymbol{y} \leq \boldsymbol{k}$ (Maximum)
$|a|>1$ Stretched out Vertically $\quad|a|<1 \quad$ Shrunken in Vertically
$\underline{h}=$ Horizontal Translation (Note the standard form has $\boldsymbol{x}-\boldsymbol{h}$ in the bracket!)
$h>0 \quad$ Translated Right $\quad h<0 \quad$ Translated Left
$\underline{k}=$ Vertical Translation
$k>0 \quad$ Translated Up $\quad k<0 \quad$ Translated Down
For Quadratic Functions in General Form: $f(x)=a x^{2}+b x+c$
y-intercept at $(0, c)$ by letting $x=0$ (Note: Complete the Square to change to Standard Form)
x-intercepts at $\left(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, 0\right)$ if $b^{2}-4 a c \geq 0$. No x-intercepts when $b^{2}-4 a c<0$
Vertex locates at $x=-\frac{b}{2 a} \quad y=f\left(-\frac{b}{2 a}\right) \quad$ Minimum when $a>0 ;$ Maximum when $a<0$

$$
\begin{aligned}
& \qquad \begin{array}{r}
f(x)=\begin{array}{r}
\text { One-to-One Function } \\
(x, y) \\
\text { Domain of } f(x) \rightarrow \text { Range of } f^{-1}(x) \\
\text { Range of } f(x)
\end{array} \\
\text { Note Domain of } f^{-1}(x)
\end{array} \\
& \text { N } f^{-1}(x) \neq \frac{1}{f(x)} \text { (Inverse is DIFFERENT than Reciprocal) }
\end{aligned}
$$

End Behaviours and Leading Terms

Odd Degree Polynomial Functions

When $a>0$, Left is Downward $(y \rightarrow-\infty$ as $x \rightarrow-\infty)$ and Right is Upward ($y \rightarrow \infty$ as $x \rightarrow \infty$).
When $a<0$, Left is Upward $(y \rightarrow \infty$ as $x \rightarrow-\infty)$ and Right is Downward ($y \rightarrow-\infty$ as $x \rightarrow \infty$).

Even Degree Polynomial Functions

When $a>0$, Left is Upward $(y \rightarrow \infty$ as $\boldsymbol{x} \rightarrow-\infty)$ and Right is Upward ($y \rightarrow \infty$ as $\boldsymbol{x} \rightarrow \infty$).
When $a<0$, Left is Downward ($y \rightarrow-\infty$ as $\boldsymbol{x} \rightarrow-\infty$) and Right is Downward ($y \rightarrow-\infty$ as $\boldsymbol{x} \rightarrow \infty$).

Multiplicity: - when a factored polynomial expression has exponents on the factor that is greater than 1.

In general, for $P(x) \div D(x)$, we can write

$$
\begin{aligned}
& \qquad \frac{P(x)}{D(x)}=Q(x)+\frac{R}{D(x)} \quad \text { or } \quad P(x)=D(x) Q(x)+R \\
& \text { Restriction: } D(x) \neq 0
\end{aligned}
$$

Quotient Function Remainder

$$
\begin{gathered}
\text { If } R=0 \text { when } \frac{P(x)}{(x-b)}, \text { then }(x-b) \text { is a factor of } P(x) \text { and } P(b)=0 . \\
P(x)=D(x) \times Q(x) \\
P(x)=\text { Original Polynomial } \quad D(x)=\text { Divisor (Factor) } \quad Q(x)=\text { Quotient } \\
\text { If } R \neq 0 \text { when } \frac{P(x)}{(x-b)}, \text { then }(x-b) \text { is NOT a factor of } P(x) . \\
P(x)=D(x) \times Q(x)+R(x)
\end{gathered}
$$

The Remainder Theorem:

To find the remainder of $\frac{P(x)}{x-b}$: Substitute b from the Divisor, $(x-b)$, into the Polynomial, $P(x)$.
In general, when $\frac{P(x)}{x-b}, P(b)=$ Remainder.
To find the remainder of $\frac{P(x)}{a x-b}$: Substitute $\left(\frac{b}{a}\right)$ from the Divisor, $(a x-b)$, into the Polynomial, $P(x)$.
In general, when $\frac{P(x)}{a x-b}, P\left(\frac{b}{a}\right)=$ Remainder.

The Factor Theorem:

1. If $\frac{P(x)}{x-b}$ gives a Remainder of 0 , then $(x-b)$ is the Factor of $P(x)$.
OR

If $P(b)=0$, then $(x-b)$ is the Factor of $P(x)$.
2. If $\frac{P(x)}{a x-b}$ gives a Remainder of 0 , then $(a x-b)$ is the Factor of $P(x)$. OR

If $P\left(\frac{b}{a}\right)=0$, then $(a x-b)$ is the Factor of $P(x)$.

Rational Roots Theorem:

For a polynomial $P(x)$, a List of POTENTIAL Rational Roots can be generated by Dividing ALL the Factors of its Constant Term by ALL the Factors of its Leading Coefficient.

Potential Rational Zeros of $\boldsymbol{P}(\boldsymbol{x})=\frac{\text { ALL Factors of the Constant Term }}{\text { ALL Factors of the Leading Coefficient }}$

The Zero Theorem

There are n number of solutions (complex, real or both) for any $\boldsymbol{n}^{\text {th }}$ degree polynomial function accounting that that a zero with multiplicity of k is counted k times.

Graphs of Natural Exponential Functions

$$
y=a^{x} \longleftrightarrow x=\log _{a} y
$$

Simple Properties of Logarithms

$\log _{a} 1=0 \quad$ because $a^{0}=1$
$\log _{a} a=1 \quad$ because $a^{1}=a$
$\boldsymbol{a}^{\log _{a} x}=\boldsymbol{x} \quad$ because exponent and logarithm are inverse of one another $\log _{a} a^{x}=x \quad$ because logarithm and exponent are inverse of one another

Common and Natural Logarithm

Common Logarithm: $\quad \log x=y \quad \longleftrightarrow 10^{y}=x$
Natural Logarithm: $\ln x=y \quad \longleftrightarrow e^{y}=x$

$$
\begin{array}{cl}
\frac{\text { Exponential Laws }}{\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}} & \frac{\text { Logarithmic Laws }}{\log _{a} x+\log _{a} y=\log _{a}(x y)} \\
\frac{a^{m}}{a^{n}}=a^{m-n} & \log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right) \\
\left(a^{m}\right)^{n}=a^{m \times n} & \log _{a} x^{y}=y \log _{a} x \\
a^{0}=1 & \log _{a} 1=0 \\
\hline
\end{array}
$$

Common Logarithm Mistakes

$$
\log _{a}(x+y) \neq \log _{a} x+\log _{a} y
$$

Example: $\log (2+8) \neq \log 2+\log 8$

$$
1 \neq 0.3010+0.9031
$$

Example: $\log (120-20) \neq \log 120+\log 20$
$2 \neq 2.0792+1.3010$

$$
\log _{a}\left(\frac{x}{y}\right) \neq \frac{\log _{a} x}{\log _{a} y}
$$

Example: $\log \left(\frac{1}{10}\right) \neq \frac{\log 1}{\log 10}$

$$
\log _{a}(x-y) \neq \log _{a} x-\log _{a} y
$$

$$
\left(\log _{a} x\right)^{y} \neq y \log _{a} x
$$

$$
-1 \neq \frac{0}{1}
$$

$$
2^{3} \neq 3(2)
$$

$$
a^{x}=y \quad x=\frac{\log y}{\log a}
$$

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad \begin{array}{ll}
A=\text { Final Amount after } t \text { years } & P=\text { Principal } \\
r=\text { Interest Rate per year }
\end{array} \quad \begin{aligned}
& n=\text { Number of Terms per year }
\end{aligned}
$$

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t} \xrightarrow{n \rightarrow \infty} A(t)=A_{0} e^{r t} \quad \begin{aligned}
& A(t)=\text { Final Amount after } t \text { years } \\
& A_{0}=\text { Initial Amount } \\
& r=\text { Rate of Increase }(+r) / \text { Decrease }(-r) \text { per year }
\end{aligned}
$$

$$
\begin{aligned}
A(t)=A_{0} e^{r t} & \begin{aligned}
A(t) & =\text { Final Amount after } t \text { years } \\
A_{0} & =\text { Initial Amount } \\
r & =\text { Rate of Increase }(+r) / \text { Decrease }(-r) \text { per year }
\end{aligned}
\end{aligned}
$$

$$
N(t)=N_{0} e^{r t} \quad \begin{aligned}
N(t) & =\text { Final Population after } t \text { years, hours, minutes, or seconds } \\
N_{0} & =\text { Initial Population } \\
r & =\text { Rate of Increase per year, hour, minute, or second }
\end{aligned}
$$

Graphs of Exponential and Logarithmic Functions

To obtain equation for the inverse of an exponential function, we start with

$$
\begin{aligned}
& y=a^{x} \\
& \boldsymbol{x}=a^{y} \quad \text { (switch } x \text { and } y \text { for inverse) } \\
& \boldsymbol{y}=\log _{a} \boldsymbol{x} \quad \text { (rearrange to solve for } y \text {) }
\end{aligned}
$$

$$
\pi \mathrm{rad}=180^{\circ} \quad \text { OR } \quad \frac{\pi}{180} \mathrm{rad}=1^{\circ}
$$

$$
y=a \sin k(x+b)+c \quad y=a \cos k(x+b)+c
$$

$|a|=$ Amplitude $\quad c=$ Vertical Displacement (how far away from the \boldsymbol{x}-axis)
$b=$ Horizontal Displacement (Phase Shift) $\quad b>0$ (shifted left) $\quad b<0$ (shifted right)

$$
\begin{gathered}
k=\text { number of complete cycles in } 2 \pi \quad \text { Period }=\frac{2 \pi}{k}=\frac{360^{\circ}}{k} \\
\text { Range }=\text { Minimum } \leq y \leq \text { Maximum }
\end{gathered}
$$

$$
y=a \sin [\omega(t+b)]+c \quad y=a \cos [\omega(t+b)]+c
$$

$|a|=$ Amplitude $\quad c=$ Vertical Displacement (distance between mid-line and t-axis)
$b=$ Horizontal Displacement (Phase Shift) $\quad b>0$ (shifted left) $\quad b<0$ (shifted right)
$\omega=$ number of complete cycles in $2 \pi \quad$ Period $=\frac{2 \pi}{\omega} \quad$ Frequency $=\frac{\omega}{2 \pi}$

$$
\text { Range }=\text { Minimum } \leq y \leq \text { Maximum }
$$

$$
\text { Note: } \sin ^{-1}(x) \neq \frac{1}{\sin (x)} \quad \sin ^{-1}(x) \neq(\sin x)^{-1} \quad(\sin x)^{-1}=\frac{1}{\sin (x)}=\csc x
$$

$y=\sin ^{-1} x$
Domain: $-1 \leq x \leq 1 \quad$ Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

$$
y=\cos ^{-1} x
$$

Domain: $-1 \leq x \leq 1 \quad$ Range: $0 \leq x \leq \pi$

$$
\begin{array}{ll}
\sin \left(\sin ^{-1} x\right)=x & \text { for }-1 \leq x \leq 1 \\
\sin ^{-1}(\sin x)=x & \text { for }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
\end{array}
$$

$$
\begin{array}{ll}
\cos \left(\cos ^{-1} x\right)=x & \text { for }-1 \leq x \leq 1 \\
\cos ^{-1}(\cos x)=x & \text { for } 0 \leq x \leq \pi
\end{array}
$$

$$
\begin{gathered}
y=\tan ^{-1} x \\
\text { Domain: } x \in R \quad \text { Range: }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{gathered}
$$

$$
\begin{array}{ll}
\tan \left(\tan ^{-1} x\right)=x & \text { for } x \in R \\
\tan ^{-1}(\tan x)=x & \text { for }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\hline
\end{array}
$$

Some Basic Trigonometric Definitions and Identities (proven equations)

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta} \\
\cos ^{2} \theta+\sin ^{2} \theta=1
\end{gathered}
$$

