# **Essential Formulas for Algebra 2 Final Exam**

# Laws of Exponents

| Divide Powers of the Same Base = Subtracting Exponents $\frac{a^n}{a^n} = a^{m-n}$ Power Rule = Multiplying Exponents $(a^m)^n = a^{m \times n}$ Zero Exponent = 1 $a^0 = 1$ Distribution of Exponent with Multiple Bases $(ab)^n = a^n b^n$ Negative Exponent = Reciprocal $a^{-n} = \frac{1}{a^n}$ Distribution of Negative Exponent with Multiple Bases $(ab)^{-n} = a^{-n}b^{-n} = \frac{1}{a^n b^n}$ Distribution of Negative Exponent with Multiple Bases $(ab)^{-n} = a^{-n}b^{-n} = \frac{1}{a^n b^n}$ | Multiply Powers of the Same Base = Adding Exponents           | $(a^m)(a^n) = a^{m+n}$                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Zero Exponent = 1 $a^0 = 1$ Distribution of Exponent with Multiple Bases $(ab)^n = a^n b^n$ Negative Exponent = Reciprocal $a^{-n} = \frac{1}{a^n}$ Negative Exponent = Reciprocal $a^{-m} = \frac{b^n}{b^{-n}}$ Distribution of Negative Exponent with Multiple Bases $(ab)^{-n} = a^{-n}b^{-n} = \frac{1}{a^n b^n}$                                                                                                                                                                                          | <b>Divide Powers of the Same Base = Subtracting Exponents</b> | $\frac{a^m}{a^n} = a^{m-n}$                                                                                                   |
| Distribution of Exponent with Multiple Bases<br>Negative Exponent = Reciprocal<br>Distribution of Negative Exponent with Multiple Bases<br>Distribution of Negative Exponent with Multiple Bases                                                                                                                                                                                                                                                                                                               | <b>Power Rule = Multiplying Exponents</b>                     |                                                                                                                               |
| Distribution of Exponent with Multiple Bases $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ Negative Exponent = Reciprocal $a^{-n} = \frac{1}{a^n}$ $\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$ Distribution of Negative Exponent with Multiple Bases                                                                                                                                                                                                                                                            | Zero Exponent = 1                                             | $a^{0} = 1$                                                                                                                   |
| Negative Exponent = Reciprocal $a^{-m}$ $\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$ Distribution of Negative Exponent with Multiple Bases                                                                                                                                                                                                                                                                                                                                                                        | Distribution of Exponent with Multiple Bases                  |                                                                                                                               |
| Distribution of Negative Exponent with Willitible Bases                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Negative Exponent = Reciprocal                                | u u                                                                                                                           |
| $(b) (a) a^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Distribution of Negative Exponent with Multiple Bases         | $(ab)^{-n} = a^{-n}b^{-n} = \frac{1}{a^n b^n}$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$ |

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
 $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$  $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$  $\sqrt{a \div b} = \sqrt{a} \div \sqrt{b}$ 

**Properties of Radicals** 

| Distribution of Radicals of the Same Index<br>(where $a \ge 0$ and $b \ge 0$ if $n$ is even) | $\sqrt[n]{ab} = (\sqrt[n]{a})(\sqrt[n]{b})$<br>$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>Power Rule of Radicals = Multiplying Exponents</b>                                        | $\sqrt[m]{\sqrt[n]{a}} = \sqrt[(m \times n)]{a}$                                                         |
| <b>Reverse Operations of Radicals and Exponents</b>                                          | $\sqrt[n]{a^n} = a$ (if <i>n</i> is odd)<br>$\sqrt[n]{a^n} =  a $ (if <i>n</i> is even)                  |

| <u>m</u> n/                       | The index of the radical is the         |
|-----------------------------------|-----------------------------------------|
| $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ | denominator of the fractional exponent. |

 $\frac{\text{Special Products}}{(A+B)^2 = A^2 + 2AB + B^2} \qquad (A+B)(A-B) = A^2 - B^2$  $(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$  $(A-B)^2 = A^2 - 2AB + B^2 \qquad (A-B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$ 

**Special Expressions** 

| Difference of Squares     | $A^2 - B^2 = (A + B)(A - B)$                  |
|---------------------------|-----------------------------------------------|
| Perfect Trinomial Squares | $A^{2} + 2AB + B^{2} = (A + B)^{2}$           |
| Perfect Trinomial Squares | $A^2 - 2AB + B^2 = (A - B)^2$                 |
| Sum of Cubes              | $A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$ |
| Difference of Cubes       | $A^{3}-B^{3}=(A-B)(A^{2}+AB+B^{2})$           |

Quadratic Formula:  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Discriminant =  $b^2 - 4ac$ When <u>Discriminant</u> is <u>Positive</u>,  $b^2 - 4ac > 0 \rightarrow Two$  Distinct Real Roots When <u>Discriminant</u> is <u>Zero</u>,  $b^2 - 4ac = 0 \rightarrow One$  Distinct Real Root (or Two Equal Real Roots) When Discriminant is Negative,  $b^2 - 4ac < 0 \rightarrow No$  Real Roots

<u>Note the pattern:</u>  $i^{1} = i$   $i^{2} = -1$   $i^{3} = -i$   $i^{4} = 1$   $i^{5} = i$   $i^{6} = -1$   $i^{7} = -i$   $i^{8} = 1$   $i^{9} = i$   $i^{10} = -1$  .... Pattern repeats every 4<sup>th</sup> power of *i*.

Product of Conjugate Complex Numbers  $(a + bi)(a - bi) = a^2 - b^2i^2 = a^2 - b^2(-1)$  $(a + bi)(a - bi) = a^2 + b^2$ 

| <b>Midpoint of a Line Segment</b>                           | <b>Distance of a Line Segement</b>         | <u>Slope</u>                      |
|-------------------------------------------------------------|--------------------------------------------|-----------------------------------|
| $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ | $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ | $m = \frac{y_2 - y_1}{x_2 - x_1}$ |

Standard Equation for Circles  $(x - h)^{2} + (y - k)^{2} = r^{2}$  P(x, y) = any point on the path of the circle C(h, k) = centre of the circle r = length of the radius **<u>Point-Slope form</u>**: - a form of a linear equation when given a slope (m) and a point  $(x_1, y_1)$  on the line  $\frac{y - y_1}{x - x_1} = m \text{ (slope formula)} \qquad y - y_1 = m (x - x_1) \qquad \text{(Point-Slope form)}$ 

If we rearrange the equations so that all terms are on one side, it will be in standard (general) form:

Ax + By + C = 0 (Standard or General form) ( $A \ge 0$ , the leading coefficient for the *x* term must be positive)

When given a slope (m) and the *y*-intercept (0, b) of the line, we can find the equation of the line using the <u>slope and *y*-intercept form</u>:

y = mx + b where m

where *m* = slope and *b* = *y*-intercept

Parallel LinesPerpendicular Linesslope of line 1 = slope of line 2slope of line 1 = negative reciprocal slope of line 2 $m_1 = m_2$  $m_{l_1} = \frac{-1}{m_{l_2}}$ 

### $y \propto x$ (y is directly proportional to x)

 $v = \mathbf{k}x$ 

where *k* = constant of variation (<u>constant of proportionality</u> – rate of change)

 $y \propto \frac{xz}{w}$  (y is jointly proportional to x, z and w)

$$y = k \frac{xz}{w}$$

where *k* = constant of variation (<u>constant of proportionality</u>)

Average Rate of Change = 
$$m = \frac{\Delta y}{\Delta x}$$
  
Average Rate of Change =  $\frac{f(b) - f(a)}{b - a}$   
It is the slope of the secant line between  
the points  $(a, f(a))$  and  $(b, f(b))$ 

## **Summary of Types of Functions:** (see page 226 of textbook)



Page 4 of 10.



Algebra 2 Formulas

### **End Behaviours and Leading Terms**



Multiplicity: - when a factored polynomial expression has exponents on the factor that is greater than 1.



Algebra 2 Formulas

If 
$$R = 0$$
 when  $\frac{P(x)}{(x-b)}$ , then  $(x - b)$  is a factor of  $P(x)$  and  $P(b) = 0$ .  
 $P(x) = D(x) \times Q(x)$   
 $P(x) = \text{Original Polynomial}$   $D(x) = \text{Divisor (Factor)}$   $Q(x) = \text{Quotient}$   
If  $R \neq 0$  when  $\frac{P(x)}{(x-b)}$ , then  $(x - b)$  is NOT a factor of  $P(x)$ .  
 $P(x) = D(x) \times Q(x) + R(x)$ 

The Remainder Theorem:

To find the remainder of  $\frac{P(x)}{x-b}$ : Substitute *b* from the Divisor, (x - b), into the Polynomial, P(x). In general, when  $\frac{P(x)}{x-b}$ , P(b) = Remainder. To find the remainder of  $\frac{P(x)}{ax-b}$ : Substitute  $\left(\frac{b}{a}\right)$  from the Divisor, (ax - b), into the Polynomial, P(x). In general, when  $\frac{P(x)}{ax-b}$ ,  $P\left(\frac{b}{a}\right) =$  Remainder.

The Factor Theorem:1. If  $\frac{P(x)}{x-b}$  gives a Remainder of 0, then (x-b) is the Factor of P(x).ORIf P(b) = 0, then (x-b) is the Factor of P(x).2. If  $\frac{P(x)}{ax-b}$  gives a Remainder of 0, then (ax - b) is the Factor of P(x).ORIf  $P(\frac{b}{a}) = 0$ , then (ax - b) is the Factor of P(x).

**Rational Roots Theorem:** 

For a polynomial P(x), a <u>List of POTENTIAL Rational Roots</u> can be generated by <u>Dividing</u> <u>ALL the Factors of its Constant Term by ALL the Factors of its Leading Coefficient</u>.

Potential Rational Zeros of  $P(x) = \frac{ALL \text{ Factors of the Constant Term}}{ALL \text{ Factors of the Leading Coefficient}}$ 

## <u>The Zero Theorem</u>

There are *n* number of solutions (complex, real or both) for any  $n^{\text{th}}$  degree polynomial function accounting that that a zero with multiplicity of *k* is counted *k* times.



 $\frac{a^m}{a^n} = a^{m-n}$ 

 $(a^m)^n = a^{m \times n}$ 

 $a^0 = 1$ 

 $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$ 

 $\log_a x^v = y \log_a x$ 

 $\log_a 1 = 0$ 

### Common Logarithm Mistakes

$$\log_{a}(x + y) \neq \log_{a}x + \log_{a}y$$
  
Example: 
$$\log(2 + 8) \neq \log 2 + \log 8$$
$$1 \neq 0.3010 + 0.9031$$
$$\log \left( x \right) \neq \frac{\log_{a} x}{1 \neq 0.3010 + 0.9031}$$

$$\log_{a}\left(\frac{-y}{y}\right) \neq \frac{\log_{a} y}{\log_{a} y}$$
  
Example:  $\log\left(\frac{1}{10}\right) \neq \frac{\log 1}{\log 10}$   
 $-1 \neq \frac{0}{1}$ 

 $\log_a(x - y) \neq \log_a x - \log_a y$ Example:  $\log(120 - 20) \neq \log 120 + \log 20$  $2 \neq 2.0792 + 1.3010$ 

 $(\log_a x)^{\nu} \neq y \log_a x$ 

Example: 
$$(\log 100)^3 \neq 3 \log 100$$

 $2^3 \neq 3(2)$ 

$$a^x = y$$
  $x = \frac{\log y}{\log a}$ 

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = \text{Final Amount after } t \text{ years}$$

$$r = \text{Interest Rate per year}$$

$$P = \text{Principal}$$

$$n = \text{Number of Terms per year}$$

$$A(t) = A_0 \left( 1 + \frac{r}{n} \right)^{nt} \xrightarrow{n \to \infty} A(t) = A_0 e^{rt}$$

A(t) = Final Amount after t years A<sub>0</sub> = Initial Amount r = Rate of Increase (+r) / Decrease (-r) per year

$$A(t) = A_0 e^{rt}$$

$$A(t) = Final Amount after t years$$

$$A_0 = Initial Amount$$

$$r = Rate of Increase (+r) / Decrease (-r) per year$$

 $N(t) = N_0 e^{rt}$  N(t) = Final Population after t years, hours, minutes, or seconds  $N_0 = Initial Population$  r = Rate of Increase per year, hour, minute, or second



Algebra 2 Formulas

$$\pi \operatorname{rad} = 180^{\circ} \quad \operatorname{OR} \quad \frac{\pi}{180} \operatorname{rad} = 1^{\circ}$$

$$y = a \sin k(x + b) + c \qquad y = a \cos k(x + b) + c$$

$$|a| = \operatorname{Amplitude} \qquad c = \operatorname{Vertical} \operatorname{Displacement} (\operatorname{how} \operatorname{far} \operatorname{away} \operatorname{from} \operatorname{the} x - \operatorname{axis})$$

$$b = \operatorname{Horizontal} \operatorname{Displacement} (\operatorname{Phase} \operatorname{Shift}) \qquad b > 0 \text{ (shifted left)} \qquad b < 0 \text{ (shifted right)}$$

$$k = \operatorname{number} \operatorname{of} \operatorname{complete} \operatorname{cycles} \operatorname{in} 2\pi \qquad \operatorname{Period} = \frac{2\pi}{k} = \frac{360^{\circ}}{k}$$
Range = Minimum  $\leq y \leq \operatorname{Maximum}$ 

$$y = a \sin \left[\omega(t + b)\right] + c \qquad y = a \cos \left[\omega(t + b)\right] + c$$

$$|a| = \operatorname{Amplitude} \qquad c = \operatorname{Vertical} \operatorname{Displacement} (\operatorname{distance} \operatorname{between} \operatorname{mid-line} \operatorname{and} t - \operatorname{axis})$$

$$b = \operatorname{Horizontal} \operatorname{Displacement} (\operatorname{Phase} \operatorname{Shift}) \qquad b > 0 \text{ (shifted left)} \qquad b < 0 \text{ (shifted right)}$$

$$\omega = \operatorname{number} \operatorname{of} \operatorname{complete} \operatorname{cycles} \operatorname{in} 2\pi \qquad \operatorname{Period} = \frac{2\pi}{\omega} \qquad \operatorname{Frequency} = \frac{\omega}{2\pi}$$
Range = Minimum  $\leq y \leq \operatorname{Maximum}$ 

$$\sum_{a = 1}^{\infty} \operatorname{Range} = \operatorname{Minimum} \leq y \leq \operatorname{Maximum}$$

Note: 
$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}$$
  $\sin^{-1}(x) \neq (\sin x)^{-1}$   $(\sin x)^{-1} = \frac{1}{\sin(x)} = \csc x$   

$$y = \sin^{-1} x$$
Domain:  $-1 \le x \le 1$  Range:  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ 

$$y = \cos^{-1} x$$
Domain:  $-1 \le x \le 1$  Range:  $0 \le x \le \pi$ 

$$\cos(\cos^{-1} x) = x \quad \text{for } -1 \le x \le 1$$

$$\cos^{-1}(\cos x) = x \quad \text{for } -1 \le x \le 1$$

$$\cos^{-1}(\cos x) = x \quad \text{for } 0 \le x \le \pi$$

$$y = \tan^{-1} x$$
Domain:  $x \in R$  Range:  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ 

$$x = \frac{\pi}{2}$$

$$x$$

Page 10 of 10.